PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享

您所在的位置:网站首页 随机生成向量 python PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享

PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享

2023-03-25 06:26| 来源: 网络整理| 查看: 265

银行数据集

我们的数据集描述

y - 客户是否订阅了定期存款?(二进制:'是','否')

相关视频

我们的目标是选择最好的回归模型来让客户订阅或不订阅定期存款。我们将使用如下算法:

线性回归

随机森林回归

KNN近邻

决策树

高斯朴素贝叶斯

支持向量机

选择最佳模型的决定将基于:

准确性

过采样

数据准备

在本节中,我们加载数据。我们的数据有 45211 个变量。

输入变量:

银行客户数据

1 - 年龄(数字)

2 - 工作:工作类型(分类:'行政'、'蓝领'、'企业家'、'女佣'、'管理'、'退休'、'自雇'、'服务'、'学生'、'技术员'、'失业'、'未知')

3 - 婚姻:婚姻状况(分类:'离婚'、'已婚'、'单身'、'不详';注:'离婚'指离婚或丧偶)。

4 - 教育(分类:'基础4年'、'基础6年'、'基础9年'、'高中'、'文盲'、'专业课程'、'大学学位'、'未知')

5 - 违约:是否有违约的信贷?(分类: '没有', '有', '未知')

6-住房:是否有住房贷款?(分类: '否', '是', '未知')

7 - 贷款:有个人贷款吗?

8 - contact: 联系通信类型(分类:'手机', '电话')。

9 - 月:最后一次联系的年份月份(分类:'一月', '二月', '三月', ..., '十一月', '十二月')

10 - day\_of\_week:最后一次联系的星期(分类:'mon', 'tue', 'wed', 'thu', 'fri')

11 - 持续时间:最后一次联系的持续时间,以秒为单位(数字)。

12 - 活动:在这个活动期间为这个客户进行的接触次数(数字,包括最后一次接触)。

13 - pdays: 在上次活动中最后一次与客户联系后的天数(数字,999表示之前没有与客户联系)。

14 - 以前:在这次活动之前,为这个客户进行的接触次数(数字)。

15 - 结果:上次营销活动的结果(分类:"失败"、"不存在"、"成功")。

社会和经济背景属性

16 - emp.var.rate:就业变化率--季度指标(数值)。

17 - cons.price.idx:消费者价格指数--月度指标(数值)。

18 - cons.conf.idx:消费者信心指数--月度指标(数字)。

19 - euribor3m:银行3个月利率--每日指标(数值)

20 - nr.employed: 雇员人数 - 季度指标(数字)

输出变量(所需目标):

y -  客户是否认购了定期存款?(二进制: '是', '否')

我们的下一步是查看变量的形式以及是否存在缺失值的问题。

我们的下一步是计算所有变量的值。

描述性统计

数值总结

改变因变量 y 的值。代替 no - 0 和代替 yes - 1。

对于我们的每个变量,我们绘制一个箱线图来查看是否有任何可见的异常值。

我们可以看到许多可见的异常值,尤其是在 balance 、 campaign 、 pdays 的情况下。在 pdays ,我们可以看到很多变量都在分位数范围之外。这个变量是一个特例,它被解码为 -1,这就是我们的图看起来像这样的原因。在表示变量之前的箱线图的情况下,它表示在此活动之前执行的联系数量,在这种情况下,我们还可以注意到许多超出分位数范围的值。

直方图

我们的下一步是查看连续变量的分布和直方图

我们可以看到没有一个变量具有正态分布。

我们的下一步是查看因变量 y 与每个变量或连续变量之间的关系。

从这些变量中我们可以得到的最有趣的观察是,大多数说不的人年龄在20-40岁之间,在月底的第20天,大多数人也拒绝了这个提议。

分类总结

我们制作仅包含分类变量的数据子集,以便更轻松地绘制箱线图

我们还查看了分类变量,看看是否有一些有趣的特征

从上面的条形图中可以看出,最有趣的结果来自变量:婚姻状况、教育和工作。

从代表婚姻状况的图表来看,大多数人都已婚。

正如我们在代表教育的图表上看到的那样 - 最大的是接受过中等教育的人数。

在约伯的情况下,我们可以看到大多数人都有蓝领和管理工作。

我们还想在马赛克图上查看我们的分类变量与 y 变量之间的关系。

正如我们所见,大多数人都拒绝了该提议。就地位而言,已婚的人说“不”最多。

在可变违约的情况下,大多数没有违约信用的人也拒绝了该提案。

大多数有住房贷款的人也拒绝了该提议。

大多数没有贷款的人拒绝了这个提议。

数据挖掘

我们想更深入地研究我们的变量,看看我们是否可以用它们做更多的事情。

我们的下一步是使用 WOE 分析。

基于对我们有用的 WOE 分析变量是:pdays、previous、job、housing、balance、month、duration、poutcome、contact。

在下一步中,我们决定根据 WOE 结果和变量的先前结果删除无用的列。

我们删除的其中一个列是 poutcome,尽管它的 WOE 很高,但我们决定删除它,因为从 prevois 分析中我们看到它有许多未知的观察结果。

在可变持续时间的情况下,我们也可以看到WOE相当大,甚至可以说这个结果有点可疑。我们决定根据 WOE 结果放弃它,因为我们的模型应该根据过去的数据说明是否建议给某个人打电话。

在可变接触的情况下,我们放弃了它,因为对我们来说,接触形式在我们的模型中没有用。

我们还删除了变量 day 因为它对我们没有用,因为这个变量代表天数,而该变量的 WOE 非常小。我们删除的最后一个变量是变量 pdays,尽管这个变量 WOE 的结果非常好,但它对我们来说并不是一个有用的变量。

我们分析中剩下的列:

特征选择和工程

要执行我们的算法,我们首先需要将字符串更改为二进制变量。

我们更改了列的名称。

创建虚拟变量后,我们进行了 Pearson 相关。

我们选择了数字列来检查相关性。正如我们所看到的,没有相关性。

我们查看因变量和连续变量之间的关系。

交叉验证

经过所有准备工作,我们终于可以将数据集拆分为训练集和测试集。

算法的实现

逻辑回归

决策树

随机森林

KNN近邻

高斯朴素贝叶斯

我们看到根据 AUC 值的最佳模型是朴素贝叶斯我们不应该太在意最低的 R2 分数,因为数据非常不平衡(很容易预测 y=0)。在混淆矩阵中,我们看到它预测了漂亮的价值真正值和负值。令我们惊讶的是,决策树的 AUC 约为 50%。

欠采样

我们尝试对变量 y=0 进行欠采样

逻辑回归

决策树

随机森林

KNN近邻

高斯朴素贝叶斯

过采样

我们尝试对变量 y=1 进行过采样

逻辑回归

决策树

随机森林

KNN近邻

高斯朴素贝叶斯

结论

我们看到欠采样和过采样变量 y 对 AUC 没有太大帮助。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3